(1 Compositional Approach — Goals

e Compositions establish an intermediate image
representation

¢ Automatic construction of full hierarchies of
compositions

¢ Learning of compositional models without hand
segmentations (only train images + overall labels)

o Dealing with large intra-category variations in
Caltech 101 database

Methodology of the compositional approach:

1) Perceptual grouping yields initial set of salient
compositions & limits representation complexity

Il) Top-down grouping forms category distinctive
composition hierarchies

lIl)Automatic learning of top-down grouping
probabilities without information on compositions
in training images

IV)Spatial coupling of compositions using

\ probabilistic shape model

(2 Recognition Phase
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Group decomposed curves 7m: Tn— 7g recursively
according to the Gestalt laws of good continuation,
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% Applying Top-Down Grouping

1. Start with set [' of salient compositions from
perceptual bottom-up grouping
2. Recursive grouping of compositions using

previously learned grouping statistics:
gi; = argmax max P(c|g;)
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Finding local maxima of compositional hierarchy:
Go from each leaf to the root and collect locally
optimal compositions = relevant compositions that
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(6 Learning Top-Down Grouping

No information about compositional nature of
objects in training data = bootstrap using estimated
co-occurrence statistics of bottom-up groupings:

train images & cat. labels
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(3 Localized Feature Histograms

Along grouped curve segments, features are
extracted as local part descriptors:
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Local descriptor is Gibbs distrib. over codebook:
P(F; = v|e;) := Z(e;) " exp (—d,(e;))

Z(e;) = Z exp (—d,(e;))
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Compositions represented as bags of parts:
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8 Performance w/o Compositions
Baseline method using only a bag of features:
Category Confusion Table
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\Retrieval rate for 200 prototypes: 41.3 * 0.38 % y

r9 Perform. of Compositional Model

of Curve Rep:

Retrieval rate (single-scale): ...

63+0.5% o
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0 Establishing Category Similarity Hierarchies by Clustering Confusion Mat. h
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